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1 �Introduction
The simplification of ecosystems for a package of improved seed, synthetic 
fertilizer and irrigation-driven yield improvement is a design paradigm that 
has dominated agricultural development (Ramankutty et al., 2018). There are 
inherent trade-offs in this model. Currently the world comfortably produces 
enough basic energy to feed all its inhabitants (Food and Agriculture 
Organization of the United Nations, 2011; Ng et al., 2014). At the same time 
agricultural lands cover ~38% of the world’s land surface area (Foley et al., 
2011), contribute to 22% of yearly anthropogenic greenhouse gas emissions 
(Smith et al., 2014), account for 92% of the human water footprint (Hoekstra and 
Mekonnen, 2012), result in erosion of ~35 Pg yr−1 of soil (Quinton et al., 2010), 
and lead to widespread nitrate and phosphate pollution (Vitousek et al., 1997), 
and drive biodiversity loss of 20–30% of local species richness (Newbold et al., 
2015). It is now recognized that many of these environmental externalities, in 
turn risk yield losses to climate change, and pest outbreaks, reducing resilience 
of the food systems on which humans depend (Bellwood, 2018; Lesk et al., 
2016; Ramankutty et al., 2018).

In recent decades, the agricultural sector has fine-tuned the model of 
optimizing yields through increased efficiency or ‘more crop per drop’. These 
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advances have been aided through the improved use of inputs. However these 
increases in efficiency have not been enough to halt the negative environmental 
impacts of agriculture on people and planet. This continued degradation has 
led to calls from food system scientists to move away from simple technological 
intensification (using synthetic fertilizers, pesticides, improved seeds and 
water) towards ecological intensification (e.g. the use of diverse crop plantings 
which help recycle or fix nutrients, manage water and pest outbreaks), as the 
major pathway towards a more sustainable agricultural future (Coomes et al., 
2019). There is some evidence that the transition to sustainable intensification 
is already taking place in many landscapes (Pretty et al., 2018).

Ecological intensification through increasing the diversity of crops in 
rotations, cover cropping, intercropping, or increasing non-crop habitat on 
farmlands, has long been promoted as a major solution to counter the negative 
impacts of agriculture on environmental and human health (Bommarco 
et al., 2013; Kremen et al., 2012). This promotion comes from the finding that 
increasing plant diversity in time and space can increase water-use efficiency, 
reduce nitrogen leaching, regenerate soils, increase pollination, reduce losses 
to pests, reduce greenhouse gas emissions, increase nutritional quality of foods 
and increase the stability of production to climate change (Isbell et al., 2017; 
Mariotte et al., 2018; Renard and Tilman, 2019). However the composition of 
elements for the design of ecological systems is not trivial and the benefits of 
diversity found in ecological studies have largely been studied in separation 
from the economics of farming. Recent studies which study both show that 
significant financial trade-offs often exist with managing diverse farming 
systems (Rosa-Schleich et al., 2019).

The decline in the diversity of crops found on larger farms is tightly 
linked to the economics of farming and labour. There is a strong inverse 
relationship between the size of a country’s economy and the percentage of 
people employed in agriculture. Lack of labour forces, an upward shift in farm 
size, mechanization and a downward shift in the complexity of agricultural 
ecosystems and the number of crop species grown, are all interlinked. As scale 
and capital investment increases, the burden of knowledge management, and 
risk, also increases, further forcing an increase in specialization and a reduction 
in crop diversity and an increase in continuous cropping cycles (Awokuse and 
Xie, 2015; Ramankutty et al., 2018; Ricciardi et al., 2018). The focus on optimizing 
yields in monoculture, with limited focus on ecological intensification, is 
reflected in modern decision-support systems used by farms for management 
today. Ecologically based decision-support tools are largely non-existent.

At the core of developing tools for managing more diverse farms, 
including crop rotations, lies a complex information challenge. Crops interact 
with each other, their above- and below-ground symbionts (e.g. fungi, bacteria, 
pollinators and pests), climate, soils, the landscape and farm-management 
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decisions, in extremely context-dependent and site-specific ways. This makes 
data-driven agronomy and digital extension services difficult and uncertain 
even in the simplest of agrosystems. Advisory for complex and diverse 
cropping systems is further exacerbated by a lack of data on local conditions, 
and lack of data on the outcomes of particular species interactions in 
response to a wide range of ancillary and seasonally varying factors, a lack 
of generalizable ecological theory and the gap between economics and 
ecological inquiry.

In this chapter I will look at the current challenges and opportunities for 
designing farm-level decision-support tools for diversified agriculture, with a 
specific focus on developing tools for crop rotations. I will cover the aspects of 
key information challenges, ecological theory, agronomic models, encoding 
farmer decisions, finishing the chapter with principles for design pulling 
together insights from these cases, and future trends and directions.

2 �Key information challenges
The landscape of decision-support systems for improved rotations, should be 
understood within a broader challenge faced by data-driven agronomy itself 
and the state of play currently in developing predictive tools for aiding farmer’s 
decision-making. The challenges faced in diverse cropping systems add a layer 
of complexity to these broader challenges through increased heterogeneity 
of information that needs to be handled. Below are the major information 
challenges facing data-driven agronomy with a particular focus on optimizing 
for multiple sustainability objectives.

	 1	 Information overload. In the age of big data, the potential for 
information overload is overwhelming. Farmers, extension agents and 
researchers contend with agricultural data from the proliferation of 
sources such as: low-cost sensors; novel satellite data streams; trial 
databases; weather data; machine data; biodiversity data; market 
data; supply chain-transparency data; certification data; climate data; 
farmer-safety data; food-safety data and interest in developing long-
term farm-, national- and global-scale datasets across these streams. 
This leads to cognitive overload, limited time for record keeping and 
‘analysis paralysis’, hindering the use of important information for 
decision-making.

	 2	 Data gaps and harmonization. While there is a growing abundance 
of data streams, data collection, aggregation and management are 
costly. This often results in a lack of coverage for some regions, or 
limited coverage of some variables resulting from aims of isolated 
data collection initiatives. Data is also collected at varying levels 
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of granularity, in disparate formats, structures, and through varied 
protocols, and is of varying degrees of quality. Where data exists, there 
are often compatibility issues between data sets and no formally agreed 
or accepted ontologies for translating between data collection efforts.

	 3	 Tool isolation. Currently, there is a disconnected ecosystem of 
sustainable agriculture tools and sustainability assessment frameworks, 
resulting in a landscape dotted with duplicated efforts, isolated clusters 
of tools lacking interoperability (e.g. decision tools that are incompatible 
with on-farm record-keeping software, or carbon calculators which are 
not integrated with financial accounting software). There are few formal 
efforts to develop modular services that are plug and play, which ensures 
the development of decision-support tools involves high up-front costs.

	 4	 Validation. Many decision-support systems do not carry estimates 
of validation of their performance for the indicators they aim to help 
optimizing for, whether that be improving farmer incomes or reducing 
pest outbreaks. This lack of validation has led to a wide number of 
tools with no benchmark as to their reliability. This is exacerbated by 
the fact that many existing decision-support tools are static and cannot 
be easily updated based on advancements in farming technology and 
management innovations, or novel data streams.

	 5	 Privacy. The collection and dissemination of data on farmer decision-
making processes and on-farm outcomes carries important privacy 
concerns. Knowledge of how farmers perform on environmental, 
economic or social outcomes is valuable information that if disclosed to 
third parties can put farmers at risk of legal action, extortion or financial 
loss. Taken together with the lack of standards for tool validation, privacy 
concerns diminish trust in tools.

	 6	 Inequalities in access. Information is power. Yet access to information 
and decision-support tools is mediated by economic or cultural status. 
The availability and access to digital technology services is unequal 
globally, and many of the world’s poor farmers are currently excluded 
from the benefits provided by commercial and public decision-support 
tool providers. At the same time there is an inequality in access to 
traditional knowledge, and farmer expertise, on outcomes of farm 
management decisions on sustainability outcomes, and cultural barriers 
that enforce the integration of traditional knowledge sources with 
mainstream science.

	 7	 Supply-driven design. Cool uses of new data streams and flashy 
hardware or software interfaces for farm management decision support 
can be found in abundance, but careful human-centred design of 
decision-support systems that tackle specific and significant problems 
faced by farmers are lacking. This is particularly problematic where 
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disciplinary gaps between natural scientists, engineers and social 
scientists exist, and ultimately results in the development of tools with 
poor usability, with low uptake and adoption. There is a need to develop 
demand-driven design principles and work with farmers directly to 
design the tools to solve their problems.

3 �Ecological theory
Over the last two decades a rapid growth in the ecological study of the costs of 
benefits of growing different combinations of plants on plant health emerged. 
We now have strong experimental evidence that plants can culture soils to the 
benefit or detriment of other plants, either through nutrient depletion, releasing 
toxic metabolites, or through the recruitment of beneficial or pathogenic 
symbionts in the root zone (Bever et al., 2012; Inderjit et al., 2011; Van Der Putten 
et al., 2013). Ecologists call these dynamics between plant interactions, ‘plant-
soil feedbacks’ (PSF), which they study for their roles in ecosystem succession, 
invasion and species coexistence (Callaway et al., 2004; Klironomos, 2002; Van 
Der Putten et al., 1993; Schnitzer et al., 2011), but really they are similar in many 
ways to crop rotations.

One of the theories that has been tested by ecologists is an old idea 
(recognized as far back as Charles Darwin) that more closely related plant 
species are likely to share pests and pathogens (Gilbert and Webb, 2007; Webb 
et al., 2006). This idea of sharing of pests and pathogens led researchers to think 
that plants that are more closely related will have more negative interactions 
with each other through the soil (Brandt et al., 2009; Burns and Strauss, 2011; 
Liu et al., 2012; Sedio and Ostling, 2013). However, the most comprehensive 
assessment to date found that this pattern is not general – and fails to hold 
across a large range of flowering plants, life histories, life cycles and even within 
groups of recently diverged species (Mehrabi and Tuck, 2015), suggesting that 
using relatedness to predict which plants will do better in rotations may be of 
limited use (Mehrabi and Tuck, 2015; Ingerslew and Kaplan, 2018).

Newer advancements in ecology have hypothesized that fast-growing 
resource-exploitative species (‘fast species’) with highly decomposable 
tissues replenish nutrients quicker and have higher fertilizing effects on 
soil than slow-growing resource conservative species. Positive effects of 
fast species on the growth of subsequent plants could be explained by 
their fertilizing effects and soil chemistry legacies of high plant-available 
N, or due to proliferation of microbes involved in nutrient mobilization 
in fast soils (Baxendale et al., 2014; Grigulis et al., 2013; Ke et al., 2015). 
However there are a number of other processes associated with fast species 
such as the proliferation of pathogens (Veresoglou et al., 2013), losses of 
beneficial fungi (Grigulis et al., 2013; Hoeksema et al., 2010; Orwin et al., 
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2010), phytotoxic effects of highly decomposable tissue inputs (Bonanomi 
et al., 2011, 2006) and disruptions or lags to recycling of plant materials  
(Hobbie, 2015), which would drive plant-soil feedbacks in the opposite 
direction, with plants performing worse on soil cultured by faster species. 
Separating out the effects of each of these factors will require targeted 
experimentation.

While ecologists still struggle to pin down reasons why species perform 
better or worse when grown in sequence, case-by-case insights have been 
developed which can help specific agricultural systems. For example, in 
limiting negative effects of below-ground pests, such as nematodes, fungi 
or bacteria (Mariotte et al., 2018; Silva et al., 2018), and through maximizing 
positive effects of plants which build symbionts with microbes in the soil 
and enhance nutrient-use efficiency (Bender and van der Heijden, 2015), 
or increase above-ground resistance to pests (Pineda et al., 2017). Some of 
these case studies are particularly important, such as with take-all in wheat, 
where new genetic varieties have been identified which create pathogen-
suppressive soils and can be rotated with more susceptible varieties, reducing 
yield losses by 3 t/ha-1 (Mehrabi et al., 2016). It is this depth of understanding 
of the ecology of soil biology that makes the research on plant-soil-feedback 
mechanisms so appealing with the idea that one day we may be able to 
engineer soils to help agricultural systems perform better by manipulating 
soil biology.

4 �Agronomic models
Alongside ecological research on plant-soil-feedbacks is agronomic research 
on ‘soil sickness’, a phenomenon which results from continuous cropping of 
the same species on soil. Crop rotation is the central method used by humans 
to overcome the observed yield declines seen with successive monocultures 
(Bennett et al., 2012; Dick, 1992; Lawes, 1895; Raaijmakers et al., 2009). Much 
empirical work has been conducted on which sequences of crops lead to 
optimal outcomes.

One well-known agronomist rule of thumb is the use of N2-fixing plants in 
rotations. Recent synthesis shows benefits to rotations for cereals rotated with 
grain legumes, with yield increases of approx. 29% relative to continuous cropping 
of cereals. However these benefits are only observed in systems where nitrogen 
application rates are low, becoming negligible in systems with N applications 
> 150 kg/ha (Cernay et al., 2018). The benefits of legume rotations in low-input 
systems, and their benefits for farmer livelihoods have been documented 
elsewhere in specific country case-studies (Snapp et al., 2010), but scaling these 
benefits to high input synthetically fertilized systems, in, for example, the EU or 
North America to reduce dependency on N inputs is less clear.
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A range of other agronomic meta-analyses have been conducted on 
the benefits and costs of rotations for pest control, product quality, input use 
reduction, production stability, improvement in soil organic carbon and soil 
quality, biodiversity, greenhouse gas emissions and economic profitability 
(Beillouin et al., 2019). In some meta-analyses the benefits of rotation for 
specific outcomes are reported to be clear, although often crop differences 
are masked by pooled analysis across systems and crop types. For example, 
organic systems have been reported to have higher yield and profits relative 
to conventional rotations when grown in longer and more diverse rotations 
(Crowder and Reganold, 2015; Ponisio et al., 2015). Longer rotations have also 
been reported to produce strong positive effects on microbial richness (Venter 
et al., 2016) and enhanced microbial N and C and microbial activity (Lori et al., 
2017).

The benefits of rotation can vary immensely by crop and system type. For 
example greenhouse warming potential and emissions intensity of soybean 
and maize rotations is greater than in continuous maize crops, but lower in 
smaller grain crop combinations of barley and pea compared to continuous 
barley (Sainju, 2016). While in some crops, the effects seem clearer, for example, 
in canola in North America diverse rotations for every 3–4 years are required 
to maintain yields (Assefa et al., 2018), in many other cases the responses are 
highly contextual, because the benefits of rotation depend on interactions 
between crop species combinations and environmental conditions. For 
example, in wheat systems wheat yields after break crops are on average 
0.5–1 t/ha more productive after oats, and 1.2 t/ha more productive after grain 
legumes, than continuous crops, but the benefits only hold for the first 2 years 
of break crop, and are less beneficial after 3 years except in drought (Angus 
et al., 2015).

In addition to problems of generalizability of empirical data, meta-analyses 
of agronomic models of ‘soil sickness’ also do not report the predictive skill 
of particular crop associations for specific outcomes (e.g. yield, biodiversity, 
climate mitigation, biodiversity impacts, etc.) , and there are significant biases in 
geographic and system-level coverage. A recent systematic review of 99 meta-
analyses assessing diversification, including studies of rotation, found that the 
majority of reported benefits of crop diversification covered only 10 key crops: 
pea, cowpea, bean, soybean, oat, rice, sorghum, barley, wheat and maize, with 
most studies based in North America and Europe (Beillouin et al., 2019).

Despite these shortcomings, the accumulation of experimental agronomic 
data is pushing us to a space where, if the coverage of systems and crop 
types increases, we may be able to make empirically based predictions of the 
likely outcomes of different rotation sequences in the near future. Data-driven 
models of optimal crop rotation pairs could therefore be within reach, even if 
general ecological theory does not yet exist to ground it. Incorporation of these 
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empirical data, with insights from operations research-based optimization 
studies, alongside formalization of farmer decision-making, and mechanistic 
modelling for rotations, remains a new frontier of this work (Box 1).

Box 1 A plethora of approaches
A number of statistical, rule-based, mathematical, and mechanistic 
models have been developed for aiding recommendations of crop 
sequences for crop rotations (Beillouin et al., 2019; Dury et al., 2012). 
These models have in general not been integrated or widely adopted 
by farmers or extension agents. These models include:

•• Recommendations for rotations based on rules set by experts, 
which cover all theoretical permutations of crops, then filter 
sequences based on thresholds for outcomes of interest (e.g. 
nitrogen leaching, soil erosion, weed and pest management), 
which may be calculated from simple spreadsheet or crop-
simulation models parameterized by field trials, and ranked 
based on likely economic benefits (Bachinger and Zander, 
2007). These models help to formalize the inclusion of multiple 
objectives in models where little data exists, although, as 
currently formulated, they are inflexible in dealing with non-
linear or complex crop or sequence plans (Castellazzi et al., 
2008).

•• Recommendations for sequences based on empirical 
observations for particular crop pairs or groups. As covered 
in Section 4, a number of trials have been compiled into 
meta-databases which cover the known relationship between 
particular crop interactions and particular outcomes from an 
agronomic perspective (Beillouin et al., 2019). These models can 
be used as a basis to make recommendations for specific crop 
selections. However currently the scope of recommendation is 
limited in crop type and geographic coverage.

•• Recommendations based on the maximization of a set of single 
or multiple objectives (e.g. gross margins, profits, labour, land, 
market demand, water, waste, food supply, pesticide use), given 
particular a priori constraints. These constraints include yields 
dependent on previous crops (El-Nazer and McCarl, 1986), 
fixed known allocations of land per crop (Detlefsen and Jensen, 
2007), forbidden crop sequences (Haneveld and Stegeman, 
2005), pre-desired planting principles (Forrester et al., 2018), 
known demand and stocking lengths (Costa et al., 2014) or 
incorporation of spatial constraints such as blocks holding 
homogenous management practices (Akplogan et al., 2013). 
Coefficients in these models can be modelled probabilistically 
to account for the influence of stochastic factors such a climate 
feedbacks (Itoh et al., 2003). While these models have tackled 
the optimization problems of rotation recommendations, they 
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are time-consuming to set up and are bounded by study-specific 
constraints and objectives.

•• Recommendations based on mechanistic models. Mechanistic or 
process-based crop models can incorporate dynamic responses 
of outcomes of interest to external factors, such as climate 
and markets. Platforms for simulating different realizations 
of process-based models have been developed (Bergez et 
al., 2013) that allow for running simulations of the impacts of 
choice of rotations on outcomes such as water use (Chacoff and 
Aizen, 2006), yields and nitrogen dynamics (Kollas et al., 2015). 
The major problem with process-based models for rotation 
modelling is the lack of representation of biotic interactions 
between crop species, data on specific non-major crops, soil 
chemistry dynamics, particularly with organic matter, and 
interactions with specific management practices (Kollas et al., 
2015).

There is a clear need to combine insights across these different 
modelling approaches into the next generation of decision-
support systems for rotations. We need a better observation of farm 
management data, more biologically realistic mechanistic models, 
adaptive recommendations based on personalized time-varying 
constraints and real-time data on climate, markets and pest outbreaks. 
To ensure adoption, these models must be integrated into culturally 
and technologically accessible interfaces designed in iterative 
participatory processes with farmers.

5 �Encoding farmer decisions
Ecologists, agronomists and economists’ representations of how farmers make 
decisions on rotations represent different ways of knowing about the world, 
which may not represent each other or model the way farmer makes rotation 
decisions. Academics have documented models of farmer decision-making 
in disparate fields, but how close has this brought us to effective decision 
support?

Economic models designed to maximize utility have been built around 
survey-driven decision trees developed with farmers to understand how farmers 
cope with risk (Adesina and Sanders, 1991), and in visualization of cropping 
choice outcomes for illiterate farmers (Collins et al., 2013). Notably however, there 
is a lot of contention about the usefulness of purely rational economic models 
in representing real-world decision-making. Operational decision-making 
theory is one school of thought that may help to overcome this by attempting to 
understand the mental models of farmers when they are undertaking rotations, 
documenting the process of information selection by farmers and exploring 
methods of dealing with time variant objectives (Martin-Clouaire, 2017)
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A key branch of studying farmer behaviour to date has been founded on 
the idea that decision-making can be encoded into a set of conditional IF-THEN 
statements, which together represent a ‘model for action’ derived from both 
objectives of the farmer and plans of schedules to realize those objectives. 
This method has been particularly useful in mapping out the temporal and 
spatial dynamics of farmers crop-planning decisions, and have been used 
for encoding vastly different farming systems, for example, in locations such 
as France and Cameroon governed by very different social and biophysical 
contexts (Aubry et al., 1998; Dounias et al., 2002). Spatial representations of 
these models for action have also been undertaken (Dury et al., 2013), and 
there have recently been efforts to join economic models with these methods, 
along with biophysical crop models as a way to model short-, medium- and 
long-term components of decision-making (Robert et al., 2018).

A complementary approach, recognized in the early 1980s by anthropo
logists (Chibnik, 1980), is the use of statistical learning to try and understand 
patterns in farmer decision-making, without depending on explicit encoding 
of farmers intentions or plans. This purely relies on inferring likely constraints 
on decision-making from realizations of plan execution. There is currently 
untapped opportunity to use of modern statistical methods to understand the 
heterogeneous nature of farmer decisions, particularly for rotations. This will be 
aided if time series of management decisions can be obtained, and likely offers 
a powerful basis for developing personalized decision support.

While these methods are useful, perhaps the most overlooked step in 
understanding farmers’ models for optimal crop sequences selection is to 
put more time into understanding farmers’ ways of knowing. This is typically 
achieved by employing methods of qualitative data collection and observation, 
such as interviews, surveys and ethnography developed in anthropology and 
sociology. Farmers’ own ways of knowing about rotations help illustrate existing 
concepts and tools used for planning, and can help build an understanding 
of what farmers think grow well together – and why (Mohler and Johnson, 
2009). Expectedly farmers also hold a breadth and depth of information not 
incorporated or reconciled with formal scientific literature (Bentley and Thiele, 
1999). The integration of both farmers’ traditional and emergent knowledge 
of what crops work best together, as well as the knowledge of the well-being 
generated from decision processes made outside those optimizing financial 
gain, remains perhaps the largest gap in our understanding of developing 
effective decision-support systems in farming.

6 �Design principles
The fundamental hurdle facing data-based decision-support systems for 
rotations is not so much a technical feat that you can solve at your computer, 
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as it is access and adoption of tools you build. Solving this challenge requires 
a clear understanding of what farmers’ key pain points are with respect to 
managing their farm and their rotations, and creating useful solutions to these 
problems. Some tips are given below:

Safeguard interests. Data-driven agronomy is a fast-moving field, and due 
to many commercial interests in this area, farmers are bombarded with surveys 
and market research aimed at building tools for decision support, which can 
be extremely extractive in nature and lead to survey fatigue. You should work 
with farmers with whom you have strongly aligned interests and a long-term 
commitment also. Decision-support tools should be designed and to empower 
users through data and knowledge and to safeguard against the risks posed by 
overreliance and loss of resilience, traditional knowledge or adaptive capacity. 
You will need to think about the ethics of your project, have clear protocols to 
minimize risk and have your data management plans approved by a recognized 
ethics board. You should have strong privacy and data-sharing agreements in 
place.

Know your user. Understand the population of farmers you want to work 
with through surveys, in depth semi-structured interviews, focus groups, design 
workshops and ethnographic methods such as non-participatory observation. 
Focus on the broader normative stance, preferred knowledge sources and 
formats, demographics, institutional context, political context, what makes 
individuals that you are working with tick, why they farm, what their greatest 
issues are and what the broader constraints in realizing their objectives as 
a farmer are. We are not focussed on rotations here but a more general 
understanding of the user group.

Define a model. Get a deep view on how your farming group currently 
models rotations, which can substantially differ from ecological, economic 
and agronomic representations of how academics or researchers like to 
model how farmers make decisions about sequential cropping patterns. How 
do they currently map out their rotations? Do they use spreadsheets, wheel 
diagrams, pen and paper, mental maps based on weather, or celestial-based 
cues? Intuition? And when do they make their plans, which actors play roles and 
constrain their option space, and what kinds of decisions happen in and out of 
season? Have they tried other solutions to deal with this problem in the past, 
and how did they arrive at their current solution? Do they see rotation selection 
as a problem that needs solving, or are there more important things on their 
agenda they would rather have help with?

Focus in. Many complementary methods exist for digesting and prioritizing 
data generated through working with farmers, for example, through affinity 
diagrams, card sorting, content analysis, persona development, journey 
mapping, network analysis, decision trees, fuzzy cognitive mapping and so 
on. Using such analytic methods to simplify the goal of the tool development 
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to focus in on one main problem to solve for your farmer group, while 
maintaining the nuances of the subsets of problems required for solving that 
problem, is a major milestone in the design process.

State and test your assumptions. All along the development cycle you 
will find yourself making assumptions about the ways farmers operate. It is 
important to explicitly state these assumptions. They should be built with your 
farmers directly, and as new assumptions arise they should be tested through 
future engagements. The development of usable decision-support tools will be 
marked by rapid iterations across ideas and assumptions that are tested and 
validated continuously.

Be forward looking. Sometimes it is not possible to develop decision-
support systems or features due to lack of empirical data – this is particularly 
the case for crop sequence decision-support systems for vegetable crops. This 
may require a re-focus on features that are not top of your agenda as a crop 
rotation specialist or developer – and may even seem tangential. It is your job 
to understand which features are of key utility to the farming objectives and 
to build tools which service their needs – which can mean offering short-term 
utility in financial management, or lifting paperwork burden for certifications, 
but at the same time generating the data required for a rotation feature to be 
built and delivered to farmers at a later date.

Check the market. Once you have focussed in, it makes sense to do 
comparative analysis of existing solutions offered to solve rotation choice 
problems, or subsets of the problem such as crop planning tools, both in terms 
of their features and their information architecture. If you have the resources 
conduct user testing on these alternative solutions to identify what your user 
group does and does not like about them, this will help you define a clearer 
idea of which design is likely to work for you.

Interoperate. It makes little sense to develop a standalone decision-
support tool, for example, for crop rotations – because decision-making 
in agricultural systems results from the integration of multiple sources of 
information, and processes. If farmers have existing tools and models for 
financial management, or labour management, fertilizer management, or other 
farm activities, then your rotation tool should be able to speak to those models. 
A common ontology and the development of translators between alternative 
semantic representations of farm objects and models are essential, and you 
should be using existing work as building blocks for your operation where 
they exist (e.g. standardized crop lists and trait information with taxonomically 
accepted names, weather data, soil data, plant and pest-trait databases).

Optimize. Bad rotation choice decisions can impact negatively on 
the environment and human health efforts should be made to provide an 
understanding of the trade-offs that a given choice of sequence will likely 
have, so that informed, rather than prescribed, decisions can be made. It 
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is unlikely that all of the criteria a farmer is using to make choices will have 
available data and, so a focus on key proxies for main variables of importance 
(e.g. nutrient balance, water balance, yield, pesticide use etc.) here is a good 
starting point.

Personalize. Farming systems and individual farmer’s models of how their 
farm works are incredibly diverse. The only solution to deal with this problem of 
multiple possible combinations of social, biophysical and value-based factors 
is to develop personalized rotation sequence decision-support services. These 
services by their nature are data hungry, and this means design has to account 
for data gathering as a key feature. The utility in personalized services is that 
they can readily account for adaptive and flexible shifts in farmers’ operations, 
decisions and learning processes.

Make accessible. One of the key challenges with developing decision-
support tools for the majority of farmers worldwide is the large inequality in the 
distribution of technology availability, access and utilization to different farmers 
– whether in service coverage, mobile phone ownership, internet access, the 
cost of data, and education, age culture, or language barriers which limit the 
usage of these services. Developing a solution that overcomes this inequality in 
decision support deserves a central place in the development of new decision-
support tools.

7 �Outlook
Crop rotations are a formative component of agricultural practices and are a 
key path towards improving multiple farming outcomes, for people and the 
planet. Improved decision-support systems for crop rotations therefore hold 
great potential for improving food system sustainability. New opportunities 
exist to gather and collect on-farm data at unprecedented temporal and spatial 
resolution and frequency. These developments herald an age of personalized 
decision-support tools able to provide adaptive recommendations for multiple 
sustainability indicators, based on real time data on climate, markets, and pests. 
Realizing this opportunity requires multiple information challenges be solved. 
Researchers will need to link insights from the development of alternative 
models for crop rotation across diverse disciplines and subject fields, to 
design tools that are interoperable with the wider farm data ecosystem, and 
that are built to both gather data and internally validate predictions over time. 
All of these efforts must be combined with improved human-centred design, 
participatory methods that seek to understand farmer’s way of knowing, and a 
long-term view to development that builds lasting partnerships with farmers, 
improves access and trust, empowers users through ownership of their data 
and maintains farmers agency in the design and governance of the decision-
support ecosytems that serve them.
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8 Where to look for further information
This chapter covered a lot of material and you might be wondering where to 
go from here? Much is covered in the references, with the exception of the 
design thinking. However there are some good books and resources to get 
you started, such as: IDEO’s Human Centred Design Toolkit (https://www.ideo.
com/post/design-kit); as well as books such as The Design Thinking Playbook 
(https://www.design-thinking-playbook.com/playbook-en) and This is Service 
Design Doing (http://www.thisisservicedesignthinking.com/).
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