Applied Plant Breeding (APBI 318) Winter 2018 TERM 1

Instructor

Andrew Riseman, Associate Professor, Plant Breeding and Agroecology

Contact:	MacMillan Building Rm 323: Tel. 822-9607
	e-mail: andrew.riseman@ubc.ca

Course Location and Times

Lecture/laboratory – MacMillan Building, Rm 342 9:30-11:00, Tuesdays and Thursdays

Course Description

This course will give students working knowledge of small-scale classical (e.g., nonbiotechnological) plant breeding and associated issues (e.g., plant reproductive biology). It will use a hands-on, application-oriented approach to enhance student understanding of the techniques and procedures involved in managing seed inventories (i.e., seed production, storage), designing and implementing a simple plant breeding program, and evaluating the impact of selection on breeding populations and desired outcomes. [3-0-0]

Learning Outcomes

Upon successful completion of this course, the students should be able:

- To design and implement a simple plant breeding program;
- To predict the potential for successful plant improvement for a particular breeding objective, given the nature of the plant species and the genetic inheritance of the trait;
- To create and manage plant populations in terms of specific genetic composition;
- To develop genetic hypotheses and apply the appropriate statistical methods for their evaluation
- To process seed for either seed saving or part of a breeding project.

Course Reading List

There is no required text for this course. Instead, students will engage with a course-specific manual, supplemental readings, and the primary literature.

Suggested Library Resources (non-reserved):

Textbooks:

Allard, R.W. 1960. Principles of Plant Breeding, John Wiley and Sons, NY Chahal, G.S. and Gosal S.S. 2002. Principles and Procedures of Plant Breeding.

Biotechnological and conventional approaches. Alpha Science, Pangbourne, UK Falconer, D.S. 1981. Introduction to Quantitative Genetics. 2nd ed. Longman, NY Raven, P.H. et al. 1992. Biology of Plants. 5th ed. Worth Publishers Simmonds, N.W. 1979. Principles of Crop Improvement, Longman, London

Journals

Theoretical and Applied Genetics	Nature Biotechnology
Genome	Plant Cell Reports
Plant Breeding	Molecular and General Genetics
Plant Cell, Tissue and Organ Culture	Can. J. Plant Science
J. American Soc. Hort Science	HortScience
Crop Science	Heredity
Experimental Agriculture	Euphytica
There are also many relevant resource sites	on the Internet. However, the credibil

There are also many relevant resource sites on the Internet. However, the credibility of the content must be assessed considering the expertise and agenda of the source.

Course Format:

The course will include lectures, writing assignments, class discussions, computer simulation, a term project, and laboratories.

<u>Activities/labs (support information will be posted on Canvas)</u> GreenGenes Breeding Simulation, "Two Minute Talks", Pollen viability, Seed viability, Tissue culture, Seed harvest, cleaning, and storage.

Evaluation Procedures:

Students will be evaluated based on their comprehension of course material, participation, and their ability to apply this information in addressing relevant problems in plant breeding and crop improvement.

Critical Thinking/Word problem Assignments	20%
(3x written; 1x oral @ 5% each)	
GreenGenes Project	20%
Laboratory Reports (4@2.5% each)	10%
Participation	10%
Term Project	40%
Crossword Puzzle (Bonus)	up to 5%
Overall:	100%

Academic Honesty

Academic honesty is a core value of scholarship. Cheating and plagiarism (including both presenting the work of others as your own and self-plagiarism), are serious academic offences that are taken very seriously in Land & Food Systems. By registering for courses at UBC, students have initiated a contract with the university that they will abide by the rules of the institution. It is the student's responsibility to inform themselves of the University regulations. Definitions of Academic Misconduct can be found on the following website:

http://www.calendar.ubc.ca/vancouver/index.cfm?tree=3,54,111,959#10894

If you are unsure of whether you're properly citing references, please ask your instructor for clarification before the assignment is submitted. Improper citation will result in academic discipline.

Critical Thinking Assignments

Assignment 1 (written): Topic: My perfect plant.

In under 1000 words, describe your perfect plant, its attributes, phenotypes, capabilities, and uses. Knowing there are genetic engineering tools that allow trans-species genetic exchange, you are free to dream big. If you have seen a particular trait in some other biological organism, it can be included. However, you are bound by all other laws of nature (e.g., no anti-gravity potatoes). Submit a .doc or .docx file via Canvas.

Assignment 2: Topic TBD

Assignment 3: Word problems

Complete the assigned genetic word problems. Complete in sufficient detail to allow me to understand how you answered the problem. Show all calculations, summaries, hypotheses, statistics, and conclusions.

Assignment 4: Two Minute Talk

Each student will present 1 Two Minute Talk. Topics will be chosen by random draw (unless someone feels drawn to a particular topic). You are allowed 1 slide for visual support. This is an oral presentation where eye contact and interaction with the audience is important; it is not reading a speech.

Genegenes Breeding Simulation:

Each student will receive a unique web-based breeding problem designed to emulate an actual breeding program but without the time required to grow populations. You will be asked to determine the genetic control of simply inherited traits, identification of interactions between genes (epistasis) and calculation of co-segregation (linkage) if present. Additional information will be posted on Canvas.

Laboratory Reports:

Following each laboratory exercise, students will submit, via Canvas, a report summarizing their experience as instructed.

Participation:

Each student is expected to contribute to the classroom discussions in a way that demonstrates engagement and curiosity.

Term Project Description

Each student will select a crop species (that is or could be grown at the UBC Farm) and write a paper that details the development of a breeding program for it. Please have your choice of crop ready by October X. I will go through them and check for duplications so that a final decision can be agreed upon by October X. It would be a good idea to have at least one or two alternative crops in mind in case of duplication.

Your term project should include the following sections:

• Title page: Title, name and student number; executive summary of project (~1/2 page); and 6-8 key words (10%).

- Introduction (~1-2 pages) (20%)
 - Economic (e.g., sales, value added), environmental (e.g., ecological services), and/or social (e.g., pedagogy, ritual) importance of growing this crop compared to other similar crops (10%);
 - Environmental requirements for crop production (i.e., feasibility assessment) (5%);
 - Extent of its current cultivation (local, regional, national, and international) (5%);
- Literature review (~1-3 pages) Relevant literature, including the most recent publications (last 5 years) should be consulted and cited as appropriate (20%).
 - Basic botany including family, order, class, genus, species, etc. with scientific and common names; characterization of flower (e.g., perfect), fruit (e.g., capsule), and pollen (e.g., bi-nucleate) (5%).
 - Evolutionary background of the crop and cytogenetic relationship with its related wild/cultivated species (2.5%);
 - \circ If known, the genetic control of important traits (1.5%);
 - Pertinent Canadian and International breeding programs including their locations (1%);
 - Current commercial breeding objectives (5%);
 - Reproduction system (i.e., outcrosser or selfer) and typical breeding methods used on this crop (5%).
- Breeding program description (? pages) (45%)
 - Vision: detail your ideal plant/cultivar profile (10%);
 - Variation: germplasm sources, cultivar/accession lists, and acquisition strategies (5%);
 - Techniques (5%)
 - Crossing techniques
 - Pollination control techniques (i.e., mechanical, spatial, temporal)
 - Description of the selection pressure environment relevant to your ideal cultivar
 - Seed harvest, cleaning, and storage techniques
 - Breeding strategy and selection criteria (15%)
 - General description of recommended breeding strategy (e.g., MS, Pedigree, SSD)
 - Planting design and isolation requirements
 - Year-by-year activities (e.g., when to increase heterozygosity, when to increase homozygosity, and when to select)
 - Seed production requirements (i.e., number of plants per generation required to achieve goals)
 - Cultivar stabilization and stock seed production procedures (10%)
- References (5%)

Course Schedule:

Date (Day),	Topic and Due dates			
Week 1: Sept 4	Imagine Day (No Class)			
Week 1: Sept 6	Course Introduction, Goals and Critical Thinking			
	Student introductions and statement of goals			
Week 2: Sept 11	Lecture: Pre-plant breeding, Plant domestication, Birth of Plant			
	Breeding, Paradigm Shifts and controversies			
Week 2: Sept 13	Lecture: Megasporogenesis Microsporogenesis and Pollen			
Week 3: Sept 18	Pollen Lab			
Week 3: Sept 20	Seed Trials and Cultivar Assessments at UBC Farm			
	Seed cleaning at UBC Farm			
Week 4: Sept 25	Seed Trials and Cultivar Assessments at UBC Farm			
	Seed cleaning at UBC Farm			
Week 4: Sept 27	Seed Trials and Cultivar Assessments at UBC Farm			
	Seed cleaning at UBC Farm			
Week 5: Oct 2	Lecture: Seed Physiology			
	Class discussion Breeding Projects			
Week 5: Oct 4	Lecture: Fertilization and Fruit			
Week 6: Oct 9	Lecture: Pollination Systems			
Week 6: Oct 11	Class discussion Breeding Projects			
Week 7: Oct 16	Lecture: Qualitative genetics/Linkage Introduction to GreenGenes			
Week 7: Oct 18	Lecture: Chi Square and Non-Normal Segregation, Linkage and			
Week 8: Oct 23	Lethality			
week 8: Oct 23	Lecture: Epistasis			
Week 8: Oct 25	Discussion: Genetic word problems			
Week 9: Oct 30	Class discussion Breeding Projects			
Week 9: Nov 1	Lecture: Lecture: Quantitative Genetics I: Population variance, allele frequency, variance and heritability			
Week 10: Nov 6	Lecture: Lecture: Quantitative Genetics II: Inbreeding depression and heterosis			

Week 10: Nov 8	Lecture: Breeding Self Pollinated Crops: Mass, Pure, Bulk Lecture: Breeding Cross Pollinated Crops (Pedigree, SSD, BC/Recurrent Selection, Hybrid) Class discussion Open Discussion
Week 11: Nov 13	Out of Town
Week 11: Nov 15	Out of Town
Week 12: Nov 20	Lecture: Genetic Engineering and Marker Assisted Selection Class discussion
Week 12: Nov 22	Lecture: Breeding for Disease Resistance Class discussion
Week 13: Nov 27	Lecture: Conducting Field Trials and Field Plot Technique Class discussion
Week 13: Nov 29	Lecture: Plant Breeding and Sustainability Class discussion
	Lecture: Food Production in 2168

	Excellent	Good	Satisfactory	Unsatisfactory
Presentation and	Clear speaking	Clear speaking	Reading from	Disorganized
Communication	voice at ease	voice	PowerPoint or	
	with the		overhead	Unprepared
	audience	Dressed for a		
		presentation	Speaking too	
	Dressed for a		quickly or too	
	presentation	Answers questions well	slowly	
	Makes eye	-		
	contact with the			
	audience			
	Answers			
	questions very well			
Use of	PowerPoint or	PowerPoint or	PowerPoint or	No PowerPoint
Technology	overheads clear	overheads clear	overhead use:	or overhead use
	with graphics or	and easy to read	some spelling	
	other usual		and grammar	PowerPoint or
	visual tools	Have a backup	errors; print too	overhead use that
		incase the	small; points not	is sloppy i.e.,
	Have a backup	technology fails	clear	spelling and
	incase the			grammatical
	technology fails			errors
Overall	Presentation is	Presentation is	Presentation has	Presentation is
Coherence of the	well organized	well organized	some	disorganized and
Presentation	and has a clear	but lacks either a	organization but	without structure
	introduction,	clear	lacks a clear	
	meaningful	introduction,	introduction,	
	substance, and	meaningful	meaningful	
	concise ending/	substance, or	substance, and	
	conclusion	concise ending/	concise ending/	
		conclusion	conclusion	